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Abstract: This study assessed soil erosion intensity and soil properties across the Crveni 

Potok catchment in Serbia, a region of diverse morphology, geology, pedology, and veg-

etation. Soil samples were collected using a regular grid approach to identify the under-

lying factors contributing to erosion and the most vulnerable areas. Based on 137Cs activi-

ties and the profile distribution (PD) model, severe erosion (>10 t ha−1 y−1) was predicted 

at nearly 60% of the studied locations. The highest mean erosion rates were detected for 

the lowest altitude range (300–450 m), Rendzic Leptosol soil, and grass-covered areas. A 

significant negative correlation was found between the erosion rates, soil organic matter, 

and indicators of soil structural stability (OC/clay ratio and St), indicating that the PD 

model successfully identifies vulnerable sites. The PD and RUSLE (revised universal soil 

loss equation) models provide relatively similar mean erosion rates (14.7 t ha⁻1 y⁻1 vs. 12.7 

t ha⁻1 y⁻1) but significantly different median values (13.1 t ha−1 y−1 vs. 5.5 t ha−1 y−1). The 

model comparison revealed a positive trend. The observed inconsistencies were inter-

preted by the models’ spatiotemporal frameworks and RUSLE’s sensitivity to input data 

quality. Land use stands out as a significant factor modifying the variance of erosion rate, 

highlighting the importance of land management practices in mitigating erosion. 

Keywords: soil loss; Chernobyl fallout; profile distribution model; physiographic factors; 

soil texture; organic matter; soil structural stability indicators 

 

1. Introduction 

Erosion is a natural process caused by water, wind, ice, and gravity, which gradually 

remove surface soil and parent rock material. Various factors, including topography, land 

cover, soil properties, rainfall, runoff, and agricultural practices, influence the vulnerabil-

ity to erosion [1,2]. Soil erosion is a major global environmental issue that impacts water 
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resources, biodiversity, carbon storage, and ecosystems [3,4]. Removal of the fertile soil 

layer rich in organic matter disrupts biogeochemical cycles of carbon, nitrogen, and phos-

phorus [5]. It affects sediment transport and off-site accumulation, harming crop yields, 

water quality, and ecosystem sustainability [6]. 

The consequences of erosion extend beyond the loss of soil fertility; they also lead to 

changes in soil properties through the selective mobilization and redistribution of its com-

ponents [7–9] and can be a factor driving variability in these properties [10–14]. Therefore, 

establishing a relationship between erosion rates, soil properties, and soil quality indica-

tors is essential for understanding the impact of soil erosion. 

Currently, the global rate of soil loss exceeds the rate of soil formation, and as a result, 

many soils are now categorized as fair, poor, or very poor [15]. Soil degradation, primarily 

caused by deforestation and the expansion of arable land, has increased by 2.5% world-

wide in the last two decades [16,17]. It is estimated that almost one-third of the soil re-

sources have degraded globally, and the number could go up to 90% in the next 25 years 

[15]. At the European Union (EU) level, a quarter of the total soil resources is degraded 

above the proposed sustainable threshold (2 t ha−1 y−1), and over 6% of the agricultural 

land has undergone severe erosion (11 t ha−1 y−1), which in turn has caused a loss of over 

1 billion EUR due to diminished productivity [18]. Water erosion is particularly prevalent, 

affecting 24% of EU land [19]. 

To address ongoing challenges [20], researchers and policymakers struggle to im-

prove soil redistribution assessment and control tools. Various direct and indirect tech-

niques are used to quantify erosion rates. Direct field-based methods like plot measure-

ments [21], erosion pins [22], sediment traps [23–25], and tracer techniques [26–28] pro-

vide valuable data but can be labor-intensive and time-consuming and may lack resolu-

tion and variability, leading to uncertainty in data. Semi-quantitative methods, which as-

sess erosion magnitude [29–32], may also be insufficient due to a lack of precision. On the 

other hand, indirect methods relying on remote sensing and geographic information sys-

tems (GISs) cover large areas and monitor changes over time [33,34], but their accuracy 

depends on proper calibration. Commonly used erosion models, such as the universal soil 

loss equation (USLE) [35] and its revised version (RUSLE) [36], estimate erosion rates 

based on factors like rainfall and soil type but rely on data that may be unavailable or 

have insufficient resolution. These models are cost-effective for large areas but may lack 

precision and fail to capture local variations. Given that each method has its trade-offs in 

terms of accuracy, scale (spatial and temporal), cost, data requirements, and expertise, 

choosing the most suitable one is contingent on specific objectives and available resources. 

Fallout radionuclides, particularly 137Cs from nuclear tests and disasters, are helpful 

in quantifying soil redistribution rates across different soil types [37]. Conversion models 

for cultivated and uncultivated soils are used to estimate the average annual erosion and 

deposition rates at the sampling location based on the difference in 137Cs inventory be-

tween the sampled site and a nearby stable, undisturbed reference site that has not been 

affected by erosion or deposition. Measurements of 137Cs offer advantages over traditional 

methods by providing spatially distributed estimates and reflecting medium-term erosion 

history (past 50 years). This retrospective erosion data can be gathered from a single visit 

without significant disruption to the landscape, thus avoiding costly and time-consuming 

monitoring surveys [38]. Additionally, once historical insight into overall past erosion is 

established, short-term erosion processes can be monitored through 137Cs concentrations 

by periodically or occasionally sampling soil at the exact locations. Despite challenges 

stemming from fallout variability, such as deposition differences due to vegetation, land 

cover, and microrelief [39,40], careful site selection can mitigate these issues, allowing 
137Cs to remain valuable for developing management practices. 
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The simultaneous use of various methods and techniques helps to address their lim-

itations and drawbacks, thereby reducing the risk of significant errors in assessing erosion 

and sedimentation rates. For instance, measurements of 137Cs in soil have been employed 

to validate different methods for soil erosion assessment, calibrate and validate soil ero-

sion models [41,42], and evaluate the relative contributions of various erosion processes 

within the study area [43]. 

The present study is set to evaluate soil erosion rates across the challenging landscape 

of the Crveni Potok catchment in Serbia. Despite the high vulnerability of soil to erosion, 

Serbia has yet to establish an adequate system for collecting and processing erosion data 

at the national level. As a result, information on soil erosion in Serbia is missing from 

relevant European databases, such as the European Soil Data Centre, that monitor Euro-

pean soil conditions. Erosion caused by wind and water affects approximately 86% of Ser-

bia’s territory [44]. The country’s southeastern part, where the study area is located, has 

been identified as most severely impacted by water erosion. The Crveni Potok catchment 

is selected based on the following essential features: large production of sediments due to 

frequent destructive torrential floods, significant spatial and temporal variability of 

eroded sediments in water, significant variability of factors that control erosion on the 

small area, diverse land use and land cover, and heterogeneous geological, soil, and geo-

morphological properties. Previous research, which utilized remote sensing and nuclear 

techniques, identified two types of soil erosion in the catchment: linear rill/gully and sheet 

erosion. Additionally, the 137Cs inventories revealed that sheet erosion was more intense 

than rill erosion [45,46]. 

This study’s objective was to deepen the understanding of the combined effects of 

multiple factors on soil erosion in the Crveni Potok catchment. To achieve this, soil sam-

ples were collected throughout the catchment using a regular grid approach. The follow-

ing methodological steps were employed: (i) assessing soil erosion rates using measure-

ments of fallout radionuclide 137Cs, (ii) analyzing the relationships between the 137Cs-de-

rived erosion rates and factors such as physiographic characteristics, soil physico-chemi-

cal properties, and indicators of soil structure stability, and (iii) comparing the 137Cs-based 

soil erosion estimates with those derived from the RUSLE model. By exploring the sources 

of discrepancies between estimates obtained by these two models and aligning the pre-

dicted erosion intensities with field observations and actual soil conditions, the research 

aims to contribute to a better interpretation and understanding of erosion modeling out-

puts in future applications across complex landscapes. 

2. Materials and Methods 

2.1. Study Area and Sampling Approach 

The studied terrains in the Crveni Potok catchment are located in the foothills be-

tween the western slopes of the Svrljiške mountains in the east and Debeli Del in the west. 

The Crveni Potok catchment is part of the Malčanska River Basin, a right tributary of the 

Nišava River, the largest right tributary of the Južna Morava (Figure 1). In geotectonic and 

morphostructural terms, the studied area belongs to the Carpatho-Balkanides [47]. 
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Figure 1. Geographical location of the Crveni Potok catchment with sampling sites indicated by 

numbers.  

In the Crveni Potok catchment and the Malčanska River Basin, the dominant initial 

forms of relief are hilly and undulating structures of different morphology and height. 

The Crveni Potok catchment covers an area of about 8 km2. It is elevated at an altitude of 

over 700 m and was formed due to long-term geotectonic and sedimentary processes. The 

height difference between the highest and lowest points of the Crveni Potok catchment is 

445 m. The lowest point is at the confluence of the Crveni Potok and the Malčanska River 

at 284 m above sea level, and the highest point is located on the northern catchment at 729 

m above sea level [45]. 

Sedimentation of materials, interruptions in sedimentation, or phases of transgres-

sion, regression, and lithification dominantly influenced a stratigraphic column in the 

northern part where red sandstones and residual clays dominate. In the northernmost 

part of the Crveni Potok catchment, red sandstones of Permian age (Upper Paleozoic) are 

widespread, made of granular quartz and mica with iron oxides (limonite), which give it 

a reddish color, while the binding material is clay. The central part of the catchment has 

the most widespread Mesozoic sandstones and siltstones, and in the lower parts, there are 

Miocene lake sediments and Quaternary deposits (alluvium) [48]. Pliocene and Quater-

nary deposits of sand, gravel, clay, gravel–sandy sediment, and conglomerates are present 

along the main course of Crveni Potok. Quaternary alluvial deposits have accumulated at 

its confluence. 

In the lower parts of the Crveni Potok catchment, redeposited/diluvial/colluvial soils 

are dominant, and residual soils dominate its upper and higher parts. The dominant soil 

types are acidic and humus-silicate brown to brown-red soils on red sandstones, lithosol 

on sandstone, and Haplic Cambisol formed on Permian sandstones. These soils retain 

some physicochemical characteristics of the parent substrate on which they were formed. 

Soils formed on red sandstones are susceptible to erosion processes. In the middle and 

lower parts of the Crveni Potok catchment, carbonate brownish Vertisols on lake 
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sediments, Distric Cambisols on smaller areas, and Calcomelansol on limestone dominate 

[49]. Leptosol is characterized by a shallow depth of soil for the development of the root 

system of dendroflora. Due to insufficient soil depth and nutrient accessibility, Leptosol 

prevents the development of the root system of most cultivated plants. The depth of the 

humus horizon of the soil in the Crveni Potok catchment varies from 1 to 3 cm, depending 

on the slope of the terrain, vegetation, and exposure to pluvial processes. Systematic sam-

pling has determined that, at higher altitudes, the soil cover is shallower and in an earlier 

stage of formation. The soils have a powdery to fine-grained loamy texture with small 

skeletal fragments. 

The complex geological structure of the Crveni Potok catchment generates various 

geomorphological forms. This catchment’s physiographic predisposition and biogeogra-

phy have caused the formation of gullies, and recent morphological forms arose due to 

the anthropogenic impact on the indigenous forest cover and grass associations. The for-

mation of gullies is indirectly related to agrotechnical measures and overgrazing in the 

period after World War II until the end of the 1980s. Agricultural land use has exceeded 

the capacity for natural regeneration of pastures and arable land, resulting in torrential 

flows during periods of increased rainfall intensity and, in the following phase, the for-

mation of gullies. Today, slower soil erosion processes occur in forest gullies. Factors that 

have influenced the slowdown of soil erosion are as follows: (i) the regressive phase of 

erosion; (ii) the erosion process has already removed the surface layer of weakly bound 

soil; (iii) soils now affected by erosion contain a significant percentage of mechanical clay 

fraction; (iv) cut forest vegetation (barren) has been partially restored with pseudo-forest 

vegetation; and (v) rainy periods are shorter due to regional climate changes. 

The dominant vegetation types in the Crveni Potok catchment are grass formations 

and sapling forests of low ecological value. Grass associations are mainly found in areas 

where deforestation has been significant in the recent past. This type of vegetation has a 

limited effect on preventing water erosion. Today, these areas consist of meadows inter-

spersed with deciduous trees and shrubs. The edification species is the Balkan sessile oak 

(Quercus dalechampii), but the white hornbeam (Carpinus betulus) and the black pine (Pinus 

nigra) are also present in mosaic form. The distribution of pseudo-forest vegetation inher-

ent in trees grown from seeds is significant. In locations where several oak trees have been 

identified, the roots are branched and firmly attached to the parent soil. In locations with 

several trees with branched roots, soil erosion and the development of gullies is slowed 

down. 

The nearest meteorological station is Niš, about 11 km from the Crveni Potok catch-

ment. Deviations of meteorological elements in the Crveni Potok catchment from the val-

ues recorded at the meteorological station in Niš are minimal. The most important mete-

orological element for the erosion process is precipitation. According to Đokić, the pre-

dicted average annual precipitation is between 632 mm in the lower parts of the river 

catchment and 861 mm in its highest parts [50]. Although the amount of precipitation is 

not large, other factors also affect the occurrence of erosion and the formation of gullies in 

the Crveni Potok catchment. In addition to the amount of precipitation, its annual distri-

bution, intensity, slope of the topographic surface, length of the slope, type of soil, grain 

size composition, water-holding capacity of the soil, water permeability and capillarity, 

water capacity and evaporation capacity, soil vulnerability, plant cover, saturation of the 

ground layer with water vapor, and air aridity are also important for the studied area. 

The method for collecting data, whether through individual or multiple transects or 

a regular grid, depends on the study’s objectives. While 137Cs measurements along tran-

sects are useful for steep, relatively short, and regular slopes, the grid approach is pre-

ferred for landscapes with more complex topography [51]. Determining a reliable refer-

ence inventory is a critical step in the applying the 137Cs technique. To achieve this, a 
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targeted sampling strategy was developed to identify a suitable reference site. The refer-

ence site was selected based on its proximity to the study area, absence of slope, lack of 

soil erosion or deposition, undisturbed soil conditions, and sparse vegetation cover. A 

cylinder corer with a 10 cm diameter was utilized to collect soil samples. The depth dis-

tribution of 137Cs was analyzed by dividing the soil cores into 5 cm intervals extending to 

a maximum depth of 20 cm. In this study the 137Cs inventories from 12 sampling points at 

the reference site in the northern part of the basin were used to account for the microscale 

spatial variability of this radionuclide, as reported by Đokić et al. [45]. 

In total, soil samples were collected at 34 locations following a 500 m grid as a general 

guideline, each extracted using a cylinder corer with a 10 cm diameter to a depth of up to 

20 cm. However, the sampling locations in the grid were slightly adjusted to account for 

key factors influencing erosion intensity, including terrain topography, slope, soil type, 

geology, climatic conditions, and vegetation (Figure 1). These adjustments ensured that 

the selected points more accurately represented the variability and dynamics of erosion 

processes in the study area. 

2.2. Soil Analysis 

Topsoil samples, up to 20 cm in depth, were air-dried at room temperature. Stones, 

larger organic matter, and other non-soil materials were handpicked and disposed of. 

Such samples were subsequently sieved to obtain a fraction up to 2 mm appropriate for 

gamma-ray spectrometry. Activity concentrations of 137Cs in the soil samples were meas-

ured using a gamma-ray spectrometer (Baltic Scientific Instruments, Riga, Latvia) with a 

high-purity germanium (HPGe) detector of 65% relative efficiency and 1.74 keV energy 

resolution for 60Co at 1.33 MeV. The efficiency calibration was conducted before measur-

ing soil samples, utilizing a mixed calibration source containing licensed reference mate-

rials. During this process the same geometry was maintained, ensuring quality assurance 

throughout. The measurements were taken over a live time of 7200 s, which resulted in a 

counting error of up to 10% for the radionuclide of interest, 137Cs. Data processing was 

performed using the SpectraLine (LSRM, Moscow, Russia) 1.6 software [52]. The activity 

concentrations of 137Cs were determined from the gamma-ray line at 661.6 keV and were 

then converted into inventories (Bq m−2) based on the soil bulk density. 

Standard procedures were followed to conduct physicochemical analyses, including 

determining particle size distribution (coarse sand: 2.00–0.20 mm; fine sand: 0.20–0.05 

mm; silt: 0.05–0.002 mm; and clay: <0.002 mm) (ISO 11277:1998(E)) [53], soil pH in water 

(ISO 10390:2021) [54], and electrical conductivity (ISO 11265:1994(E)) [55]. The water 

content (moisture) in air-dried soil samples was determined at 105 °C, following the ISO 

11465:1993 [56]. The organic carbon (OC) and total nitrogen (N) content were determined 

by ISO 10694:2005 [57] and ISO 11261:2005 [58], respectively. The soil samples were 

analyzed for Al, Fe, Ca, Mg, K, and Mn content. Given the diversity of soil types, the 

metals included are among the most abundant in the soil and are linked to soil mineral 

composition. Thus, establishing the relationships between their content, other soil 

properties, and erosion rates helps understand soil type’s effects on erosion vulnerability. 

Samples were digested in aqua regia (SRPS ISO 11466:2004) [59], and metal concentration 

measurements were conducted using inductively coupled plasma-optical emission 

spectrometry (ICP-OES) on the Avio 200 instrument (Perkin Elmer, Waltham, MA, USA) 

according to ISO 22036:2024 [60]. 

The indicators of soil structure stability (OC/clay ratio and St) were calculated based 

on the results from the investigated locations. The physical properties of soil, such as wa-

ter retention capacity and clay dispersibility, are better understood through the interaction 

between OC and clay content rather than by analyzing these characteristics individually 

[61]. Additionally, the susceptibility of soil to structural disintegration, referred to as St, 
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was evaluated based on organomineral complexes, which are defined as soil organic mat-

ter (SOM) bound to the fine fractions of both silt and clay, calculated as follows [62]: 

St(%) =  
SOM

(Clay + Silt)
 × 100 (1) 

In Equation (1), a Van Bemmelen factor of 1.724 is used to convert the OC content 

into the SOM content. 

2.3. Erosion Assessment Methods 

Two models are used to estimate soil erosion rates in the investigated area: the profile 

distribution (PD) model and the revised universal soil loss equation (RUSLE) model. The 

details of the models and input parameters used in this study are given below. 

2.3.1. The Profile Distribution (PD) Model 

The PD model developed by Walling and He is widely applied to obtain assessments 

of soil redistribution (both erosion and deposition) rates based on the 137Cs inventories in 

uncultivated soils [63]. In the study area, a notable part of the 137Cs fallout input occurred 

after the 1986 Chernobyl disaster. Namely, it was found that only around one-fifth of the 

measured soils’ 137Cs inventories do not account for the Chernobyl-induced fallout activity 

[64–66]. On the other hand, there was no notable contribution to the total 137Cs inventory 

in Serbia due to the Fukushima accident at the beginning of 2011 [67]. 

In this study, the modified PD model was applied, which includes the abovemen-

tioned factors, namely the year 1986 as a substitute for 1963, which is associated with ther-

monuclear bomb tests’ maximum fallout (Equation (2)), written as follows: 

Y =
10

t − 1986
ln (1 −

X

100
) h0  (2) 

where Y represents the annual soil loss (t ha−1 y−1), i.e., the erosion rate (with a negative 

value for an eroding point, having a lesser total 137Cs inventory compared to the reference 

value); t indicates the sampling year (yr); X represents the relative reduction in the 137Cs 

inventory against the local 137Cs reference value in %; and h0 is a coefficient named the 

profile shape factor, which reflects the depth of penetration of 137Cs into the soil [63,68], 

and its value increases with the penetration depth. 

The percentage reduction in the 137Cs inventory X is calculated as in Equation (3): 

X = [
Aref−Au

Aref
] 100 (3) 

where Aref and Au represent the total 137Cs inventory measured at the reference and the 

sampling point (Bq m−2), respectively. 

The profile shape factor h0 is calculated by fitting the simple undisturbed soil’s expo-

nential function below (Equation (4)) to the obtained vertical distribution profile of 137Cs 

at the time of sampling at the reference site [68,69]. In many cases, for the undisturbed 

stable soil, this profile exhibits a simple exponential decline with depth (Equation (4)), 

written as follows [70,71]: 

A(x) = A(0)e−x h0⁄  (4) 

where A(x) represents the 137Cs activity concentration at mass depth x (Bq kg−1); A(0) is the 
137Cs activity concentration of the surface soil (Bq kg−1); while x represents the mass depth 

relative to the soil surface (kg m−2). 

The deposition rate R′ may be estimated using the following relationship (Equation 

(5)): 
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R′ =  
Aex

∫ Cd(t′)e−λ(t−t′)dt′t

t0

=
Au − Aref

∫ Cd(t′)e−λ(t−t′)dt′t

t0

 (5) 

where Aex is defined as the excess 137Cs inventory and Cd (t′) is the 137Cs concentration of 

deposited sediment. 

2.3.2. The Revised Universal Soil Loss Equation (RUSLE) Model 

The RUSLE [35] is an empirical model used in studies worldwide to estimate erosion 

rates [72–74]. Due to its applicability in different environments and efficiency in data pro-

vision and model parameterization costs, the RUSLE is the most widely used model in 

soil conservation and management. The RUSLE model can be described as follows (Equa-

tion (6)): 

A = R × K × LS × C × P (6) 

where A is the average annual soil loss rate (t ha−1 y−1); R is the rainfall erosivity factor (MJ 

mm ha−1 h−1 year−1); K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1); LS is the topo-

graphic factor (dimensionless); C is the cover management factor (dimensionless); and P 

is the support practice factor (dimensionless). 

The numerical value assigned to the R factor quantifies the raindrop impact and ac-

counts for the potential runoff volume and rate resulting from the rainfall [36,75]. Tradi-

tional approaches for calculating the R factor typically rely on extensive rainfall data, fre-

quently unavailable in many areas. In the study area, the following equation (Equation 

(7)) provided by Đokić was used to estimate annual precipitation (P) based on altitude (H) 

[50]: 

P = 243.06 ⋅ ln(H) −741.19 (7) 

For precipitation calculations, the advanced land observing satellite digital elevation 

model (ALOS DEM) was used, initially at 12.5 m resolution, resampled to 10 m. Digital 

elevation model (DEM) was converted from ellipsoidal heights to the EGM96 vertical da-

tum to ensure our elevation data accurately reflects the mean sea level. The R factor was 

calculated according to Van et al. model (Equation (8)), written as follows [76]: 

R = a ⋅ P (8) 

where a factor is 1.3 and P is the annual precipitation (mm). 

The K factor indicates the soil’s ability to resist erosion caused by the impact of 

raindrops, and the rate and volume of runoff generated for that rainfall under standard-

ized conditions [77]. In this study, the K factor is calculated using a model developed by 

Williams as follows (Equations (9)–(13)) [78]: 

KUSLE = fcsand ⋅ fcl−si ⋅ forgc ⋅ fhisand (9) 

fcsand = (0.2 + 0.3 ⋅ exp ⌊−0.256 ⋅ ms ⋅ (1 −
msilt

100
)⌋) (10) 

fcl−si = (
msilt

mc + msilt
)

0.3

 (11) 

forgc = (1 −
0.25 ⋅ orgC

orgC + exp[3.72 − 2.95 ⋅ orgC]
) (12) 

fhisand = (1 −
0.7 ⋅ (1 −

ms

100)

(1 −
ms

100) + exp [−5.51 + 22.9 ⋅ (1 −
ms

100)]
) (13) 
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where KUSLE is the soil erodibility factor; fcsand (coarse sand factor) is function of the high 

coarse sand content of the soil; fcl-si (clay-to-silt ratio factor) is a function of the clay and 

silt of the soil; forgc (organic carbon factor) is a function of the organic carbon content of the 

soil; fhisand (high sand content factor) is the function of the high sand fraction content (0.05–

2.00 mm diameter) in the soil ms (%, Table S2); msilt is the silt fraction content (0.002–0.05 

mm diameter) (%); mc is the clay fraction content (<0.002 mm diameter) (%); and orgC is 

the organic carbon content (%, Table S2). 

The LS factor includes the slope length factor (L) and the slope steepness factor (S). 

The LS factor was calculated using ALOS DEM with a resampled resolution of 10 × 10 m 

through the methodology proposed by Moore et al. using SAGA 7.8.2. [79]. A sink fill 

algorithm based on Wang and Liu was used to remove surface depressions in the digital 

elevation model before LS calculation [80]. 

The C factor reflects how different types of land cover influence the soil’s protection 

against erosion. The value of the C factor is directly influenced by vegetation type, its 

growth stage, and the percentage of ground covered by the vegetation [77]. In this study, 

the C factor values are assigned to all land use types based on the values cited in the liter-

ature [81]. The ESA WorldCover dataset with a 10 m resolution based on Sentinel-1 and 

Sentinel-2 data was used for land cover input [82]. Field observations were conducted at 

every sample site for cases where the classifications according to the ESA WorldCover 

dataset and our sampling locations differed. The C factor for sampling locations was mod-

ified based on direct observations and accurate terrain data to reflect current conditions. 

The P factor is the ratio of soil loss after soil conservation measures to the amount of 

soil loss without any soil conservation measures [83,84]. 

2.4. Data Analysis 

The basic statistics included the analysis of central tendency, variability, and normal-

ity. As skewness and kurtosis values indicated the data’s deviation from a normal distri-

bution, the correlation analysis was conducted using log-transformed data. The Pearson 

correlation was used to examine the strength of relationships between the analyzed vari-

ables. To investigate how variations in physiographic factors (altitude, slope, geology, soil 

type, and land cover) impact erosion rates, a one-way Welch’s analysis of variance 

(ANOVA) was performed. This was followed by Games–Howell pairwise comparison 

tests to evaluate the differences among the means of the various groups. All statistical 

analyses were performed using R version 4.3.1 [85]. 

3. Results 

3.1. Physiographic Properties of the Sampling Locations 

The detailed physiographic data for each sampling location can be found in Table S1. 

The distribution of sampling points based on geology is as follows: 15 sites are situated 

on clastic Permian sediments, 11 on Miocene lacustrine sediments, 5 on Pliocene and Qua-

ternary lacustrine sediments, and 3 on limestone. In terms of soil types, Haplic Cambisols 

are the most dominant, found at 15 locations, followed by Vertisols at 10 locations, Regic 

Anthrosols at 4 locations, Mollic Leptosols at 3 locations, and Rendzic Leptosols at 2 loca-

tions. 

Vegetation cover at the sampling sites varies, with grasslands of different densities 

found at 16 locations, forests at 15 locations, and shrubs at 3 locations. 

The slopes of the sites range from 3° to 23°, with an average of 12°. Additionally, the 

altitude ranges from 303 to 673 m above sea level, with an average altitude of 485 m (Table 

1). 
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Table 1. Descriptive statistics of altitude, slope, soil physicochemical properties, soil structure sta-

bility indicators, and soil erosion rates estimated by the PD and RUSLE models (N = 34). 

Variable Mean SD * CV ** Skewness Kurtosis Min. Median Max. 

Topography 

Altitude (m) 485 107.4 22.16 0.27 −1.25 303 464 673 

Slope (°) 12 5.2 41.89 0.31 −0.52 3 11 23 

Soil physicochemical properties 

Coarse sand (%) 14.4 6.31 43.78 0.59 1.78 2.30 14.75 34.50 

Fine sand (%) 15.0 7.29 48.66 1.43 2.91 3.7 14.0 39.7 

Silt (%) 43.3 10.50 24.23 0.41 −0.61 24.8 40.5 66.4 

Clay (%) 27.3 13.45 49.32 0.08 −1.48 9.2 29.0 52.6 

Water content (%) 3.3 1.71 51.93 0.14 −1.42 0.9 3.1 6.3 

pH (H2O) 6.9 1.27 18.59 −0.10 −1.24 4.6 6.6 8.6 

EC (mS m−1) 7 3.14 47.61 0.80 −0.48 3 6 13 

OC (%) 3.090 1.12 36.20 0.04 −0.93 0.900 3.033 5.027 

N (%) 0.259 0.09 36.93 0.95 1.12 0.110 0.232 0.541 

OC/N 11.9 2.23 19.16 0.83 0.80 8.2 11.8 18.3 

Ca (mg kg−1) 23,480 41,898 178.5 2.54 6.21 453 6770 178,000 

Al (mg kg−1) 23,310 10,164 43.61 0.18 −0.24 5110 22,700 48,300 

Fe (mg kg−1) 30,780 8388 27.25 0.08 −0.39 13,200 30,300 46,300 

K (mg kg−1) 3780 1831 48.47 0.14 −0.96 737 3465 7510 

Mg (mg kg−1) 6460 4831 74.75 2.06 5.81 608 5275 24,700 

Mn (mg kg−1) 773 4096 52.98 0.83 −0.44 288 604 1800 
137Cs (Bq kg−1) 15.0 6.95 46.47 0.17 −1.22 3.4 14.5 27.6 

Indicators of soil structure stability 

OC/Clay 0.156 0.109 70.16 0.91 −0.28 0.022 0.117 0.399 

St (%) 7.6 2.71 35.4 −0.14 −0.95 2.3 7.8 11.9 

Erosion rates (t ha−1 y−1) 

PD model 14.7 11.15 75.75 0.75 0.07 0.4 13.1 43.3 

RUSLE 12.7 16.63 130.3 1.43 1.34 0.1 5.5 62.7 

Note(s): * Standard deviation; ** coefficient of variation. 

3.2. Physicochemical Properties of the Soil Samples 

Table S2 encapsulates the physical and chemical properties of the soil. The soil across 

different locations within the Crveni Potok catchment demonstrates significant variations 

in the percentage composition of individual particle size fractions. The Coefficient of Var-

iation (CV), calculated as the ratio of the standard deviation to the mean, indicates that 

the most notable variations occur in the clay (CV = 49.32%) and fine sand (CV = 48.66%) 

fractions. In the lower part of the study area, soils predominantly exhibit finer textures, 

such as clay and clay loam (Table S2). In contrast, the upper section is mainly character-

ized by silty loam, loam, and occasionally sandy loam textures. The ability of these soils 

to retain moisture varies widely, as evidenced by the water content measured at 105 °C, 

which ranges from 0.9% to 6.3%, resulting in a CV of 51.93%. 

The soil pH values ranged from 4.6 to 8.6, with a CV of 18.59%. Based on the general 

interpretation of soil pH measured in a 1:5 soil/water ratio [86], the soil pH values in the 

study area can be categorized as very strongly acidic (pH 4.5–5.0; five samples), moder-

ately acidic (pH 5.6–6.0; three samples), slightly acidic (6.1–6.5; nine samples), neutral 

(6.6–7.3; four samples), mildly alkaline (pH 7.4–7.8; one sample), moderately alkaline (pH 

7.9–8.4; seven samples), and strongly alkaline (pH 8.5–9.0; five samples). Acidic soils, spe-

cifically Haplic Cambisol and Regic Anthrosol, were commonly found in forested areas. 
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Electrical conductivity (EC) values varied from 3 mS m−1 to 13 mS m−1 across different 

soil samples, resulting in a CV of 47.61%. Salinity rating based on the EC measurements 

taken at a 1:5 soil-to-water ratio and soil texture related to clay content [86] indicates that 

soils have very low (28 samples) and low salinity (6 samples). 

The soils also showed varying levels of organic carbon (OC) and total nitrogen (N), 

with CVs of 36.20% for OC and 36.93% for N. The recorded OC values ranged from 0.900% 

to 5.027%, while N values ranged from 0.110% to 0.541%. According to the classification 

of OC levels in the topsoil horizon [87], most samples (30) exhibited medium levels of OC 

(2.0% to 6%), while three samples had low levels (1.0% to 2%), and one sample had a very 

low level (less than 1% OC). The OC/N ratio, which indicates organic matter turnover and 

nitrogen availability, fluctuated between 8.2 and 18.3 (CV = 19.16%). 

In the study area, the mean concentrations of elements in the surface soil (Table 1) 

displayed that the most abundant ones were Fe, Ca, and Al, with mean concentrations of 

30,780 mg kg−1, 23,480 mg kg−1, and 23,310 mg kg−1, respectively. Next, Mg was found at a 

mean concentration of 6460 mg kg−1, K at 3780 mg kg−1, and Mn at 773 mg kg−1. Iron ex-

hibited the least variability among the selected elements (CV = 27.25%), while Ca showed 

the most significant variability (CV = 178.5%). 

3.3. Soil Indices for Assessing Structural Quality and Susceptibility to Erosion 

Aggregate stability is a relevant indicator of soil vulnerability to runoff and erosion 

[88]. Improved aggregation of soil particles rich in OC enhances soil structure, making it 

less prone to compaction and more stable in water [61]. By examining the relationship 

between soil organic matter and the content of fine-sized particles (clay or clay + silt) in 

soils with a known structural condition, including poorly structured and/or eroded ones, 

soils with adequate organic matter were distinguished from those that have lost their 

structure and are highly susceptible to erosion [62,89]. 

The calculated values of the indicators by location are given in Table S3. The mean 

OC/Clay ratio in the study area was 0.156 (Table 1). This ratio varied from 0.022 to 0.399, 

highlighting the complexity and diversity of soil composition and stability in the catch-

ment, as indicated by a high coefficient of variation (CV = 70.16%). 

Research has demonstrated that the OC/Clay ratio can effectively differentiate soils 

with varying structural quality. Values of 1/8, 1/10, and 1/13 are proposed thresholds for 

classifying soil structural conditions as very good, good, moderate, and degraded [61,89]. 

While the validity of these thresholds was challenged in a study by Johannes et al. [90], 

which primarily examined agricultural soils, it was confirmed that a decline in soil struc-

ture correlates with a decrease in the OC/Clay ratio, with the 1/8 ratio representing an 

average for soils considered to have very good structure. 

Out of 34 samples from the Crveni Potok catchment, the soil at 17 locations exhibited 

an OC/Clay ratio greater than 1/8, indicating a very good structure. Most of these soils (13 

samples) were collected in forested areas (Tables S1 and S3). In contrast, the OC/Clay ratio 

was lower than 1/13 at 10 grassland and one shrubland location. The results indicate the 

significant influence of land use on the OC/Clay ratio. Among various factors, such as 

land use, average annual precipitation, major soil groups, pH levels, flood risk, and top-

soil depth, land use was identified as the primary factor influencing the variance of the 

OC/Clay ratio in the soils of England and Wales [89]. 

The St varied between 2.3% and 11.9% (CV = 35.4%) with a mean of 7.6. The St level 

of 5% was set as an empirical critical limit, below which a loss of structure leads to a great 

susceptibility to erosion [62]. Furthermore, St values between 5% and 7% are recom-

mended as indicators of soil instability and heightened risk of structural decline. Con-

versely, soils with a St greater than 9% are not considered at immediate risk. Based on this 

St classification, the soil at six locations was physically degraded, 16 samples could be 
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classified as at risk, and 12 as soils with stable structure at no immediate risk. Notably, all 

areas where soil has lost its structural integrity are covered with grass. 

3.4. Soil Erosion Rates Estimated by the PD Model and Relationships with Physiographic 

Factors 

The activity concentrations of 137Cs and the soil erosion rates calculated using the PD 

model are presented in Table S3. The mean activity of 137Cs across the study area was 15.0 

Bq kg−1 (Table 1). The CV is 46.47%, indicating high variability among locations within the 

Crveni Potok catchment, with values ranging from 3.4 Bq kg−1 to 27.6 Bq kg−1. No signs of 

soil deposition were observed, as the 137Cs inventories at the investigated grid points were 

lower than those at the reference site [45]. 

Based on the measured 137Cs activities and using Equation (2), the PD model esti-

mated erosion intensities from 0.4 to 43.3 t ha−1 y−1, with a CV of 75.75%. The mean erosion 

rate was found to be 14.7 t ha⁻1 y⁻1, which is slightly lower than the mean erosion rate of 16 

t ha⁻1 y⁻1 reported by the same methodology in gullies located in the upper part of the 

study area [45,46]. 

In terms of erosion rate classifications used by the European Union (low: <5 t ha−1 y−1; 

moderate: 5–10 t ha−1 y−1; and severe: >10 t ha−1 y−1) [91], the study area included 9 locations 

characterized by low erosion intensity, 5 with moderate, and 20 with severe erosion inten-

sity. 

The impact of variations in physiographic factors on the erosion rates derived from 

the PD model was analyzed using ANOVA (Figure 2). Although erosion rates show high 

variability within individual classes of factors, the ANOVA test followed by a pairwise 

comparison test revealed some significant differences between the classes. In each panel 

of Figure 2, different letters (i.e., A and B) indicate groups with significantly different 

means. Conversely, groups that share at least one letter (e.g., A and AB and AB and B) are 

not significantly different from each other at the p < 0.05 significance level. 

The mean values of erosion rates decreased with elevation (Figure 2a), demonstrating 

a significant difference between the lowest elevation range (300–450 m) and the highest 

range (600–700 m). Similarly, the mean erosion rate was lower for steeper slopes (20–30°) 

than those on slopes up to 20° (Figure 2b). However, the difference across these slope 

categories was not statistically significant, likely due to the limited number of data points, 

which makes reliable conclusions difficult. 

No significant differences were observed when comparing groups with different ge-

ological compositions (Figure 2c). The lowest mean erosion rate was associated with Per-

mian sediments. The distribution of erosion rates among different soil groups (Figure 2d) 

revealed that Haplic Cambisol, formed on consolidated Permian sediments, had a lower 

mean erosion rate than soils developed on unconsolidated sediments. The difference be-

tween the Haplic Cambisol and Rendzic Leptosol groups was significant. 

Finally, the vegetation cover type at sampling locations influenced the estimated ero-

sion rates (Figure 2e), revealing a significant difference between forested areas and grass-

lands. The lowest erosion rates were measured in forested areas, followed by shrublands, 

with the highest rates observed in locations with grassland cover. Moreover, the variabil-

ity of erosion rates in forested areas was much lower than in grasslands. 
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Figure 2. Box plots showing the distribution of erosion rates estimated by the PD model based on 

physiographic factors: (a) altitude, (b) slope, (c) geology, (d) soil, and (e) land cover. The box frames 

the interquartile range; the whisker extends from the lowest to the highest value; a star symbol in-

dicates the outliers; the horizontal line indicates the data median; the circle indicates the mean value 

for the group, and N is the number of samples. Groups that do not share the same letter (i.e., A and 

B) are significantly different (p < 0.05) based on the Games–Howell pairwise comparison tests. 

3.5. Soil Erosion Rates Estimated by the RUSLE Model 

Figure 3 shows raster maps for RUSLE model factors, including rainfall erosivity (R-

factor), soil erodibility (K-factor), slope length and steepness (LS-factor), cover manage-

ment (C-factor), and support practices (P-factor). The P factor was set to a value of 1.0 

across the entire study area based on the observation that no specific soil conservation 

practices are currently implemented. The resultant soil loss map, derived from integrating 

these factors, provides a detailed visualization of the potential soil erosion across the area. 

This map highlights the spatial distribution of soil loss, identifying areas with varying 

erosion intensities, from low to severe, and offering valuable insights for land manage-

ment and soil conservation planning. 
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Figure 3. RUSLE Factor maps (a–e) and RUSLE model based soil loss map (f). 

The RUSLE model predicted erosion rates at investigated locations (Table S3) ranged 

from 0.1 to 62.7 t ha−1 y−1, scoring a CV of 130.3% (Table 1). The mean value of 12.7 t ha−1 y−1 

was close to the one predicted by the PD model (14.7 t ha−1 y−1), but the median value was 

significantly lower (5.5 t ha−1 y−1 vs. 13.1 t ha−1 y−1, respectively (Table 1)). Following the 

classification of erosion intensities [91], low-intensity erosion was anticipated at 17 loca-

tions, moderate at 4, and severe at 13 locations. 

3.6. Correlation of Estimated Soil Erosion Rates with Soil Physicochemical Properties and 

Indicators of Soil Structural Stability 

The associations between soil properties, indices of soil stability, and soil erosion 

rates, tested using Pearson’s correlation coefficients, are presented in Figure 4. 

 

Figure 4. Pearson correlation coefficient (r) of soil erosion rates estimated by PD and RUSLE models, 

soil physicochemical properties, and indicators of soil structural stability (N = 34). 
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In the study area, the mass activities of 137Cs showed significant positive correlations 

with OC, N, the OC/N ratio, and the silt fraction. Additionally, there was a positive cor-

relation between 137Cs and Mn concentration, which aligns well with the observed associ-

ation between Mn-rich minerals and the silt fraction. Conversely, 137Cs activity had a sig-

nificant negative correlation with clay content. This finding was reinforced by a negative 

correlation of 137Cs with water content and, specifically, the Al, a common element in the 

crystal lattice of clay minerals. Additionally, the clay fraction increased significantly with 

a higher Ca and Mg content and soil pH, demonstrating a high presence of clay-sized 

particles in carbonate-rich soil. Meanwhile, 137Cs activity concentrations were in a strong 

negative correlation with these parameters. 

Overall, soil texture and organic matter are the primary factors influencing the con-

centration of 137Cs in the topsoil of the Crveni Potok catchment. The interaction between 
137Cs and soil occurs primarily through cation exchange sites with varying specificity and 

reversibility, mainly involving organic matter and clay minerals [92]. The strong covari-

ance of OC and 137Cs arises from similar transportation pathways during soil redistribu-

tion along the sloping terrains [93]. Positive correlations between 137Cs and OC have been 

detected in eroding soils across different types and land uses, including forests [94–96], 

uncultivated areas [97], abandoned farming sites [96], and certain cultivated soils [98–

101]. The relationship between the activity of 137Cs and different particle size fractions is 

complex and influenced by specific local conditions such as soil type and structure and 

the extent of erosion. Studies have shown both positive correlations with clay [99] and 

negative correlations [38], while other research indicates a positive correlation with both 

silt and clay fractions [102]. 

Erosion rates estimated using the PD model, based on 137Cs activities, demonstrated 

a significant negative correlation with OC, N, and Mn content in the soil (Figure 4). Areas 

with high erosion rates are at risk of not only a further decline in organic matter content 

but also changes in the composition of OC fractions in the remaining soil. Water erosion 

tends to selectively increase the proportion of mineral-associated organic matter while 

decreasing the proportion of lighter particulate organic matter [103,104]. Moreover, a re-

cent analysis examining how soil nitrogen concentration and composition respond to var-

ying erosion intensities confirmed that erosion diminishes total nitrogen content in eroded 

areas and alters the composition of dissolved nitrogen, ultimately reducing its availability 

[105]. Erosion rates tended to increase with higher clay and lower silt content in the soil, 

but these trends were not statistically significant. Furthermore, the correlation between 

PD-derived erosion rates and the investigated elements’ content was not significant, ex-

cept for Mn. A notable negative correlation with Mn-rich minerals seems to arise from 

Mn’s association with the silt fraction. Haplic Cambisol with silt and silt loam texture was 

characterized by notably higher Mn concentrations than soils with finer textures (Table 

S2). This underlines the impact of soil type on erosion intensity and supports the findings 

from Figure 2d. 

Soil structure stability indicators displayed a significant (p < 0.01) positive correlation 

with 137Cs activity concentrations and, consequently, a negative correlation (p < 0.01) with 

the PD model estimates (Figure 4). This shows that the predictions of the PD model and 

the values of physicochemical indicators of soil structural quality align in identifying en-

dangered sites. Likewise, a significant correlation has been reported between soil redistri-

bution rates estimated by 137Cs and St in croplands within a semi-humid region [106]. 

In our study area, the OC/Clay ratio and the St were negatively correlated with the 

soil pH. Such a relationship results from higher OC and lower clay content in the upper 

part of the catchment, predominated by acidic forest soil (Tables S1 and S2). An increase 

in the OC/Clay ratio in acidic soils, particularly those with a pH below 5, has been previ-

ously observed in permanent grass and woodland areas [89]. 
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Erosion rates estimated by RUSLE were significantly positively correlated with clay 

fraction and clay fraction-associated parameters pH, Ca, and Mg, while presenting nega-

tive correlations with 137Cs, OC, OC/N, OC/Clay, and St. The OC/N ratio serves as a mean-

ingful proxy of organic matter quality and the composition of the soil microbial commu-

nity [107]. Unlike particulate organic matter, mainly composed of plant residues with low 

N content, mineral-associated organic matter consists of low molecular weight organic 

compounds with higher N content [108]. The association of this fraction with minerals 

makes it less vulnerable to disturbance. Therefore, the significant reduction in the OC/N 

ratio with increased erosion intensity supports the dominance of the more stable mineral-

associated organic matter over the particulate organic fraction in areas experiencing se-

vere erosion by water. 

The linear relationships observed among all examined parameters and predictive 

models are consistent in direction, although they vary in strength (Figure 4). The RUSLE 

estimates demonstrate a stronger correlation with the OC and clay content since these 

data were incorporated within the model. Finally, the correlation of log-normalized data 

for the PD and RUSLE model estimates shows a positive trend; however, it is not statisti-

cally significant at p < 0.05. 

4. Discussion 

Our findings are consistent with the observed intensity of erosion in semi-arid envi-

ronments. The erosion rates estimated using the 137Cs method reach 39 t ha–1 yr–1 on a 

Mediterranean coast [109] and even 116 t ha–1 yr–1 in an agricultural area of a watershed 

in Turkey [110]. Considering different methods, numerous studies [109–112] have shown 

that higher soil erosion rates can be observed when using the 137Cs method compared to 

the RUSLE model. Using both methods, the highest values of erosion rates were obtained 

for croplands and the lowest for forested areas. However, other local factors can affect 

large variability in forest erosion rates [113]. In mountainous regions of Europe, the results 

obtained from the universal soil loss equation (USLE) are similar in magnitude to those 

based on 137Cs across land use types, except for hayfields and pastures lacking dwarf 

shrubs, where the USLE underestimated erosion intensity [114]. In contrast, erosion and 

sedimentation rates estimated by the USLE, RUSLE, and 137Cs were completely different 

in a watershed in Brazil [115]. 

A comparison of the PD and RUSLE model results can provide essential insights into 

soil erosion dynamics in our study area. Although the PD model, by definition, accounts 

for all types of erosion, its estimates could be compared with those from the RUSLE, fo-

cusing solely on water erosion, as water is the only erosion agent in the study area. After 

conducting a correlation analysis on the log-normalized data (Figure 4), the original data 

were analyzed to compare erosion rates obtained from both approaches in meaningful 

real-world units. The correlation was weakly positive (r = 0.372) and statistically signifi-

cant at p < 0.03, indicating that both models identify similar erosion trends, although their 

quantitative outputs do not always align (Figure 5). 
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Figure 5. Scatterplot of RUSLE vs. PD model estimates (original data). The numbers refer to the 

sampling sites. 

The comparison reveals a discrepancy in the upper area of the Crveni Potok catch-

ment covered with forest vegetation, with the nuclear method showing predominantly 

higher erosion rate values. This difference arises from the two methods’ distinct temporal 

and spatial perspectives. Namely, the 137Cs method offers an insight into the long-term 

erosion rate since the Chernobyl nuclear accident in 1986, encompassing decades of vary-

ing land use and vegetation cover. Historically, the area was characterized by sparse grass 

and shrub vegetation, which provided limited protection against erosion and facilitated 

intense gully erosion, exacerbated by heavy grazing, primarily by goats [45]. Over time, 

natural vegetation succession led to the establishment of dense forests and thick grass-

lands, stabilizing the soil and significantly reducing active erosion. The gully systems, 

once a major contributor to sediment transport, have largely transitioned into a dormant 

phase. Consequently, the 137Cs method reflects the historical dynamics of soil redistribu-

tion and captures changes over time. 

In contrast, the RUSLE model estimates erosion rates based on present-day land 

cover and vegetation (low C-factor, indicating lower vulnerability to erosion hazards), 

which now effectively protects the soil in most parts of the area. Despite the area’s steep 

slopes and substantial rainfall, the dense vegetation mitigates surface runoff and limits 

the detachment and transport of soil particles. This results in much lower erosion rates 

predicted by RUSLE, as it does not account for the historical phases of land use and ero-

sion intensity that significantly influenced the long-term sediment budget. This compari-

son underscores the importance of considering historical and contemporary factors to 

comprehensively assess erosion dynamics and the interplay between land use, vegetation 

changes, and soil stability. 
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The limitations of the RUSLE model are evident, as it does not account for gully ero-

sion processes [116–118]. This is particularly significant in the forested areas of the upper 

part of the Crveni Potok catchment, where gully erosion is a major contributor to overall 

topsoil degradation by water [46]. Due to its inability to model soil loss caused by gravity 

flow [119], the RUSLE model may significantly underestimate actual soil loss rates. 

An exception to this common trend of RUSLE estimates is observed at two sampling 

locations characterized by grass vegetation rather than forest cover. At sampling location 

9, the erosion rates are nearly the same (20.1 by PD and 20.9 t ha−1 y−1 by RUSLE), and at 

sampling location 11, the erosion rate predicted by the RUSLE method is higher (22.2 t ha−1 y−1) 

than that obtained from the 137Cs method (6.6 t ha−1 y−1). 

In the lower part of the catchment, the 137Cs method indicates higher erosion rates at 

several locations (19, 23, 28, 31, and 32) covered by forest, compared to the RUSLE model. 

This can be explained by the proximity to human settlements, where, in the past, vegeta-

tion was sparse and often controlled by human activity. With fewer people in the area 

today, vegetation is gradually regrowing, including denser forest cover. At sampling loca-

tions 22 and 15, the 137Cs method indicates a significantly lower erosion rate (6.9 t ha−1 y−1 and 

1.4 t ha⁻1 y⁻1) compared to the value estimated by the RUSLE model (39.3 t ha−1 y−1 and 20.6 

t ha⁻1 y⁻1). The RUSLE method, considering the steep terrain and sparse vegetation, pre-

dicts a high erosion rate, which seems unrealistic due to the shallow depth, slow formation 

of soil on limestone, and the limited amount of soil that can be eroded. In these cases, the 

RUSLE method probably overestimates the erosion rate. 

In grassland areas, the calculation showed mean erosion rates of 20.03 t ha−1 y−1 and 

24.41 t ha−1 y−1 and the median values of 19.52 t ha−1 y−1 and 20.74 t ha−1 y−1 for the PD and 

the RUSLE models, respectively. Despite the agreement of mean and median values, the 

outputs of the two models still differed in absolute values (Figure 5). 

The extreme values in erosion predictions derived from the RUSLE model can pri-

marily be attributed to its strong association with the LS factor. The RUSLE model, which 

directly incorporates topographic factors into its calculations, is very sensitive to changes 

in slope characteristics [120], and the LS factor can overestimate soil erosion in complex 

topographies [121]. Similarly, there is often a lack of detailed, site-specific rainfall amount 

and intensity data, which are critical for calculating the rainfall erosivity (R) factor. The 

absence of such precise information introduces uncertainties in the model’s predictions. 

The observed differences in predictions obtained by PD and RUSLE models also arise 

from their distinct conceptual frameworks (relying on the vertical distribution of 137Cs 

within a soil profile related to the soil characteristics vs. an empirical model based on sev-

eral external parameters that are not always field-based and/or reliable) and the estimates 

they provide (gross erosion rates vs. net erosion rates not considering the sediment yield). 

The comparison of estimated erosion rates with soil conditions is a practical way for 

model verification and agreement checking [115]. Soil structure is a key factor affecting 

water retention and infiltration, gas exchange, soil organic matter and nutrient dynamics, 

root penetration, and erosion susceptibility [122]. Various mineral and organic agents con-

tribute to soil aggregation and structure preservation. The rearrangement of particles, 

flocculation, and cementation are the main drivers for soil particle aggregation, facilitated 

by SOM, biota, clay, Fe- and Al-(hydr)oxides, and carbonates [123,124]. 

In our study area, both investigated models were negatively correlated with struc-

tural stability indicators (Figure 4). Lower St and OC/clay values are generally found in 

the lower part of the study area, which is characterized by higher erosion rates. The high 

clay and silt and low SOM content in this area contribute to the soil’s increased suscepti-

bility to sealing [125]. Surface sealing and the resulting crusting are recognized as signifi-

cant forms of soil degradation, primarily driving runoff and promoting inter-rill soil ero-

sion. The formation of a thin layer at the soil surface reduces porosity and increases 
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resistance to penetration, for which the St value serves as a valuable indicator [126]. The 

St shows a significant positive correlation with saturated hydraulic conductivity and a 

negative correlation with bulk density and penetration resistance [127]. 

Conversely, higher SOM levels contribute to soil stability in the upper parts. The in-

teraction of OC with the surface of mineral particles through sorption on pedogenic ox-

ides, clay minerals, and by co-precipitation with polyvalent cations is an effective mecha-

nism of soil stabilization [128]. In addition, the increase in SOM content reduces suscepti-

bility to erosion by altering pore size distribution, providing higher air-filled porosity and 

water-holding capacity [129]. High SOM content protects the soil aggregates by creating 

a hydrophobic coating and inhibits slaking and swelling, which destroys the soil struc-

ture. 

Notably, both models and indicators of soil structure stability agree that location 26 

is the most severely affected by erosion, where measures for soil quality and erosion con-

trol should be prioritized. 

The study underscores the importance of high-resolution and precise terrain data for 

the accuracy of RUSLE outputs, which can be obtained through advanced non-terrestrial 

methods such as drone surveys or light detection and ranging (LiDAR) technology. Fur-

ther study limitations stem from the inherent assumptions of the methods themselves, 

such as the PD model’s inability to account for the time-dependent nature of 137Cs fallout 

input and its post-fallout redistribution within the soil profile or the RUSLE method’s ex-

clusion of sediment yield. However, the combined use of these methods enhances the re-

liability of their outputs and provides valuable information on the most vulnerable areas. 

Evaluating the association of PD and RUSLE outputs with soil stability indicators across 

different geological, hydrological, and climatic conditions in future research will enhance 

the reliability of the study’s initial findings. 

5. Conclusions 

Predictions from the PD model indicate that severe erosion impacts 20 out of 34 lo-

cations in the study area. Significant influences from elevation, soil type, and land cover 

have been identified. Erosion rates were negatively correlated with the content of organic 

matter and the soil aggregate stability indicators. This supports the model’s findings by 

providing evidence of actual soil conditions and vulnerability to erosion. Increased sus-

ceptibility to erosion detected in the lower part of the basin was affiliated with predomi-

nant grass and sparse shrub vegetation, clay and clay loam soils, and low organic matter 

content failing to effectively stabilize soil aggregates. Adopting enhanced forest manage-

ment practices is essential for effectively mitigating soil erosion in this area. This includes 

implementing measures to prevent deforestation and actively promoting reforestation to 

increase organic matter levels and enhance soil stability. 

The research contributes to promoting the value of the 137Cs method even over very 

complex terrains and the usefulness of model predictions for further assessing the com-

bined influence of various factors on the erosion process. Comparing the results of the PD 

and RUSLE models proved helpful for understanding the erosion process from the dis-

tinct assumptions of the models. Furthermore, assessing soil conditions by structural sta-

bility indicators can help users and decision-makers adjust their practices and effectively 

direct efforts to reduce erosion intensity. Once these indicators are established, they can 

facilitate tracking changes in soil vulnerability over time, particularly concerning soil ero-

sion and the effectiveness of erosion control measures. 

Supplementary Materials: The following supporting information can be downloaded at 
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